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Real-Time Defect Detection Scheme Based on
Deep Learning for Laser Welding System
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Abstract—Laser welding, as an important material pro-
cessing technology, has been widely used in various fields of
industry. In most industrial welding production and process-
ing, high precision is required for welding parameters and
fixed work pieces. However, in the process of laser welding,
serious heat transfer effect will bring unpredictable welding
deviations, and even a small deviation will lead to serious
welding defects, which will affect the quality of the welded
products. Traditional nondestructive testing methods have
been widely used, but they have been proved to have some
limitations. Existing laser welding defect detection schemes
are mainly focused on the detection of postweld defects,
which requires a large amount of data, and the real-time
detection cannot be guaranteed. In this article, we propose a data acquisition system for collecting changes in physical
characteristics during laser welding with the aids of multiple sensors. Based on the data originating from sensors’
system, an efficient laser welding defect detection model has been designed and investigated based on the multiscale
convolutional neural network (MSCNN), bidirectional long short-term memory (BiLSTM), and attention mechanism (AM).
The final proposed MSCNN-BiLSTM-AM fusion detection model can achieve 99.38% detection accuracy, which make the
laser welding system more efficient and more suitable.

Index Terms— Attention mechanism (AM), data enhancement, defect detection, integrated learning, laser welding.

I. INTRODUCTION

METALS are indispensable and important materials
in modern industrial production and manufacturing.

Metal materials are indispensable for everyday household
appliances, transportation, cargo-laden ships and airplanes,
corrosion-resistant and pressure-resistant chemical equipment,
and aerospace and national defense industries. In the manu-
facturing process of these industrial products, various parts
need to be connected to make products according to the
design requirements. Laser welding is an ideal processing
method to connect these parts [1], [2], [3] and widely used
in industrial production and manufacturing process, which is
an improvement and innovation of the traditional welding
methods [4], [5], [6], [7], [8]. Compared with the tradi-
tional methods, laser welding has the characteristics of higher
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power density, fast speed, large depth, and little influence
on the thermal distortion of the welded parts. In addition,
laser welding can weld refractory materials, such as titanium,
quartz, and so on, and can weld anisotropic materials with
good results [9], [10], [11]. Because of this, laser weld-
ing technology is gradually replacing the traditional welding
methods and has been widely used in civil production, mili-
tary engineering technology, aerospace technology, and other
fields [12], [13], [14].

As an important means of welding, laser welding can realize
the automation and flexible processing of the welding process,
in which the high speed of laser welding meets the inherent
requirements of the development of modern industry, but like
the traditional welding methods, there will be some welding
defects caused by aging of equipment, parameter differences,
welding materials, and so on. How to effectively and timely
discover the defects in the laser welding process is particularly
important. There are many external and internal causes that
cause the defects of laser welding, and there will be cracks,
breakdown, defocusing, distortion, lack of welding, and other
welding defects in the process of laser welding. These welding
defects will reduce the quality of component products and
even invalidate their functions. A small welding defect may
cause enormous economic and even personal injury. Therefore,
defect detection of laser welding has become a very important
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inspection link. Now, with the development of miniaturization
and lightweight industrial equipment, the traditional welding
defect detection scheme appears to be somewhat inadequate
and cannot be applied to more complex and variable welding
scenarios.

With the rapid development and maturity of the theory of
deep learning, the performance of deep learning in various
fields is brilliant [15], [16]. Intelligent fault diagnosis tech-
nology relying on in-depth learning has become a research
hot spot and development direction in the field of artificial
intelligence. At present, the main intelligent fault diagnosis
algorithms are artificial neural network (ANN), support vector
machine (SVM), random forest, and so on [17], [18]. They are
developing from single strategy classification and prediction to
multistrategy fusion. Now, the in-depth learning technologies,
such as machine vision, biometric recognition, natural lan-
guage processing, speech recognition, and intelligent decision
automation control, are integrated into the production, opera-
tion, and defect detection of the equipment, which enables the
equipment to have the ability of self-perception, self-adaptive,
self-control, self-learning, and so on, thus greatly improving
the overall operation stability and reliability of the industrial
system [19].

Based on the powerful feature expression ability of deep
learning [20], an automatic welding defect location method
has been proposed based on U-net network, which includes
data enhancement and welding defect location. Kan and
Kalkan [21] present an automatic welding defect detec-
tion method based on image processing and machine learn-
ing, in which the welding material is divided into several
subimages, and each sub image is detected and classified.
Deng et al. [22] study these data based on industrial image
processing algorithm and deep learning algorithm. In this
study, the median filter is used to remove the noise in the weld
image. Image enhancement technology is used to improve
the image contrast of different regions. Deep convolution
neural network (CNN) is used for feature extraction, and
the activation function and adaptive pool method can be
improved. A multisensor data fusion network based on CNN is
presented for in-process defect detection, called IDDNet [23].
The experimental results show that IDDNet achieves better
classification results than SVM with an overall accuracy of
97.57%. An integrated deep learning architecture [15] has
been proposed and investigated based on CNN, gated recursive
unit (GRU), and high-performance classification algorithms,
such as k-nearest neighbor (KNN) and SVM, in which a
synthesis scheme based on classical machine learning method
is proposed, and the optimal hyperparameters of each algo-
rithm are determined by extensive grid search. Miao et al. [24]
present a comprehensive identification method of weld defects
based on CNN combined with eddy current testing and 3-D
laser scanning. The detection principle and equipment of the
two detection methods are introduced. In order to realize the
real-time detection of narrow lap welding, a two-stage defect
identification model is established, which greatly improves the
efficiency of weld defect identification. Aiming at the prob-
lem of low measurement accuracy of the existing detection
methods, a welding surface defect detection system based

on the principle of optical coherent distance measurement
has been designed [25]. Based on the principle of Michelson
interferometer, a point on the welding surface is scanned by
broadband laser to collect the interference light intensity of
the reference arm and the measuring arm.

The main contributions of this article can be summarized
as follows.

First, we propose an intelligent laser welding defect
detection scheme [multiscale convolutional neural network
(MSCNN)–bidirectional long short-term memory (BiLSTM)–
attention mechanism (AM)] based on MSCNN, BiLSTM and
AM. Because the multimodel integration and fusion can take
into account the advantages of different models, the proposed
fusion model can not only give full play to the spatial feature
extraction ability of CNN but also extract the temporal corre-
lation information of features by using BiLSTM. In addition,
AM is introduced in the appropriate position of the network
to reduce or filter the impact of “noise” features on the final
classification results and improve the recognition performance
of the overall detection scheme.

Second, when designing CNN, we tried the multichannel
and multiscale cascading mode of CNN and BiLSTM, which
fused the feature information within the range of different
receptive fields, greatly enriched the diversity of features
learned by the model, and made it possible to train a better
depth model. Finally, through a large number of compara-
tive experiments and ablation experiments, we verified the
superiority of the improved scheme proposed in this chapter
and confirmed that the advantage of introducing subalgorithm
model into the theoretical design was reflected in the integrated
model.

The rest parts are organized as follows. Section II briefly
introduces the basic theory of deep learning model for defect
detection. Section III describes the experimental device of
data acquisition. In Section IV, the intelligent detection model
proposed in this article is introduced in detail, and the effec-
tiveness and superiority of the proposed method are studied
and proved. Finally, Section V draws a conclusion.

II. PRINCIPLE OF DEEP LEARNING DEFECT DETECTION

As an improved network of RNN, the LSTM is widely
used in the classification of time-series data, especially in
text classification, because it can capture the time-series char-
acteristics well and handle the data with front–back depen-
dence well. Although the LSTM model captures long-distance
dependencies and successfully solves the problems of gradient
disappearance and loss of historical information in the RNN
model, the LSTM cannot extract back-to-front information,
that is, the ability of LSTM to fuse front-to-back information
is poor. Therefore, the BiLSTM model is introduced in order
to better capture the correlation characteristics before and after
the data. However, not every feature information contributes
the same to the classification of final laser welding quality
status in all fused information. Inspired by the fact that the
human brain pays attention to some key information when
it remembers something, different attentions are allocated to
different levels of characteristic information. This attention
allocation mechanism allows the in-depth learning model to

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on August 02,2023 at 08:02:57 UTC from IEEE Xplore.  Restrictions apply. 



PENG et al.: REAL-TIME DEFECT DETECTION SCHEME BASED ON DEEP LEARNING FOR LASER WELDING SYSTEM 17303

Fig. 1. (a) Network structure diagram of the BiLSTM. (b) Basic building
blocks of the LSTM.

filter out more detailed information that is critical to the
outcome of the target from a large amount of information,
thus improving the expected performance level of the in-depth
learning model.

A. Basic Mechanism and Principle of BiLSTM Network
The BiLSTM is a combination of forward LSTM and

backward LSTM, and the network structure is shown in
Fig. 1(a). BiLSTM adds a backward LSTM layer relative to
LSTM. Such a structure allows BiLSTM to simultaneously
handle both-way temporal characteristics, and each network
layer can capture both past (forward) and future (backward)
feature information at a specific time step. After processing
the forward and backward LSTMs, the output of the two
LSTMs is stitched together, so the network as a whole can
fuse forward and backward temporal correlation information.
BiLSTM approximates the bidirectional loop neural network
in its overall structure, and the structural unit of the LSTM
network is still used in the main part of the computational
function. The structure unit of LSTM mainly consists of four
components: input gate, output gate, forget gate, and internal
memory unit, which are separated as shown in Fig. 1(b).

In Fig. 1(b), ht−1 is the final output value of the LSTM
neuron unit at the last moment, Ct−1 is the cell state of the
smart grid unit at the previous moment, xt is the input at the
current moment, σ is the activation function, ft is the output
of the forgotten gate at the current moment, it is the output
of the input gate at the current moment, Ĉt is the candidate
cell state at the current moment, ot is the output value of
the output gate, Ct is the cell state at the current moment,
and ht is the output of the current moment. Gates in LSTM
are a selective path for information to enter. It consists of a
layer of sigmoid function calculations and point multiplication
operations. Input–output and forgetting gates work together to
protect and control the state of smart grid cells. The sigmoid

layer outputs values between 0 and 1 describing how much
information can be passed in each part of the information,
0 for “no amount allowed” and 1 for “any amount allowed.”
The LSTM calculation process is shown as follows.

First, the current output of the amnesia gate is calculated
from the output value ht−1 of the LSTM neuron unit at
the previous moment and the current input data xt , and the
information to be forgotten is selected, as shown in (1). The
values of ft in the formula range from 0 to 1, W f is the weight
matrix of the gate, and L is the offset of the gate

ft = σ
(
W f

[
ht−1, xt

]
+ b f

)
. (1)

Second, according to the output value ht−1 of the LSTM
neuron unit at the previous moment, the input gate output it at
the current moment, the input data xt at the current moment,
and the candidate cell state Ĉt at the current moment, the
information to be memorized is calculated and selected, that is,
to determine what new information is stored in the smart grid
cell state. The calculation process is shown in the following
equations:

it = σ
(
Wi
[
ht−1, xt

]
+ bi

)
(2)

Ĉt = tanh
(
WC

[
ht−1, xt

]
+ bC

)
. (3)

The values of it range from 0 to 1, Wi is the weight matrix
of the input gates, bi is the input bias, WC is the weight of
the candidate input gates, and bC is the bias of the candidate
input gates.

Then, the state Ct of the current smart grid cell is calculated
from the internal memory cell. As shown in (4), the value of
Ct ranges from 0 to 1

Ct = ft ∗ Ct−1 + it ∗ Ĉt . (4)

Finally, the hidden layer state values of the output gate and
the current moment are calculated as shown in the following
equations:

ot = σ
(
Wo

[
ht−1, xt

]
+ bo

)
(5)

ht = ot ∗ tanh (Ct ) . (6)

Through the above calculation process, we can get a
sequence of hidden layer states with the same length as the
original data. When the BiLSTM is used in the classification
of time series {h0, h1, h2, . . . , hn−1}, the forward extracted
hidden layer state sequence and the backward extracted hidden
layer state sequence are stitched together to form a time-series
two-way feature fusion sequence, which can be used as an
input for subsequent classification network layer. However,
not all the extracted features have the same contribution to
the classification task, some of them have commonalities or
interfere with the classification results. Therefore, how to
enlarge the role of contributing features in classification tasks
and reduce the impact of invalid and irrelevant features on
classification results is particularly important. The introduction
of AM is an excellent solution to this problem.

B. Principles of AM
Attention originates from the human visual system. When

people look at things, they remember some key information
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Fig. 2. Basic structure of the AM.

for some purpose or instinctive purpose, such as shape, color,
size, and so on. They also ignore some visible information.
When observing the outside world, human beings use this
physiological mechanism to allocate their attention through
the brain to obtain more important target information. This
allows people to use limited attention resources to quickly
get useful information about their goals from a large amount
of information. In deep learning, neural network is a kind
of brain-like computing model, so the AM in neural network
is different from that of human visual nervous system. As a
result, AMs excel in many scenarios in the field of deep
learning. Attention-based neural networks have attracted great
interest from researchers all over the world in the study of
in-depth learning.

AMs can be divided into hard-AM and soft-AM according
to their differentiability. Hard AMs select one of the input
vectors as the output of the mechanism based on the dis-
tribution of attention, which results in an area being either
fully concerned or not at all. Therefore, the hard AM is
an indispensable attention allocation scheme, which makes
the functional relationship between the overall loss function
and the attention distribution of the model indistinguishable
and makes it impossible to train the model using the back-
propagation algorithm. In the research and use of in-depth
learning models and AMs, most of them are calculated in the
form of soft attention. Soft AM uses attention distribution to
weight sum and fuse input vectors and uses different weighting
coefficients from 0 to 1 to indicate the degree of attention
each area receives. The larger the value assigned by the weight
factor, the more attention allocated, that is, the more important
the corresponding information is.

The calculation of AM is essentially to assign attention
weights to all input information. The mathematical calculation
process of the mechanism can be expressed as (7) and (8).
Wa is the AM’s weight matrix, which represents the degree to
which different location information needs to be emphasized.
en is the result of the first weighting calculation, b indicates
a bias in the AM, X = [X1, X2, . . . , X N ] is the AM’s input,
and an represents the attention weight obtained by entering
X = [X1, X2, . . . , X N ]. Generally, there are two steps in the
AM: 1) calculating the distribution of attention and 2) calculate
a weighted average of the input information based on the
attention distribution. Fig. 2 gives a schematic of the AM’s

Fig. 3. Experimental system for laser welding.

Fig. 4. Diagram of data collection design for laser welding process.

basic structure, in which X = [X1, X2, . . . , X N ] represents N
items of input information, X is called source in the industry,
and query represents the corresponding query space after
partitioning the input information. First, the input information
X and query are passed to the attention score function s, which
can be designed and selected in two ways: additive attention
and zooming point product attention. Subsequently, the score
results are entered into the Softmax layer to obtain the atten-
tion weight factor [a1, a2, . . . , aN ] of the input information.
Finally, the input information is used to weighted average the
attention weight factor vector to get the final result

en = tanh (Wa [X1, X2, . . . , X N ] + b) (7)

an =
exp (en)∑N

k=1 exp (ek)
. (8)

III. DESIGN OF DATA ACQUISITION SYSTEM FOR LASER
WELDING PROCESS BASED ON SENSOR

According to the law found in the experiment, the designed
laser welding process data acquisition system mainly includes
a Southampton Photonics Inc. (SPI) pulse fiber laser, a gal-
vanometer scanner, a flat field lens, two vibration mirrors,
and a sensor-based front-end data acquisition system. Fig. 3
demonstrates the laser welding experimental system. By turn-
ing the vibration mirror to change the laser path, the gal-
vanometer scanner can reflect the laser to the desired position.

Front-end signal acquisition consists of two photoelectric
detectors, a pyrometer sensor, and some optical elements. The
overall schematic of the data collection system is shown in
Fig. 4. The acquisition equipment and laser welding equip-
ment were coaxial installed. The PDA10A2 photodetector in
wavelength range of 200–1100 nm is used to collect plasma
and light intensity signals. The pyrometer sensor uses a
PT2400 high-temperature optical fiber sensor in the range of
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−40 ◦C to 750 ◦C to monitor temperature changes during
the welding. The data acquisition card is used to collect the
electrical signal generated by the sensors, and the collected
information is analyzed and processed on the computer.

The standard welded parts are made of SUS304 stainless
steel plate with a thickness of about 0.3 mm and a radius
of 22 mm. A continuous wave optical fiber laser was used
in the experiment. The laser output power was 80 W and
the welding speed was 50 mm/s. During the data collection
experiment, 130 sampling time points are set for each standard
workpiece during the welding process, and plasma strength,
light intensity, and temperature values are collected at each
sampling time.

According to the experimental device and data collection
scheme, we have collected and constructed a dataset of
6467 samples of laser welding quality, including nine welding
defect states and one welding qualification state. For the
collected welding process data, standardization is required in
order to eliminate errors caused by different dimensions or
large differences in values. We converted the welding quality
data into a standard dataset with a mean value of 0 and a
variance of 1. The ten welding quality states in the dataset are
“qualified,” “defocus 3 mm,” “defocus-3 mm,” “deformation,”
“cracks,” “repetition,” “lack of weld,” “drift,” “tilt, ” and
“watermarks, ” respectively.

IV. MSCNN AND BILSTM FUSION MODEL FOR LASER
WELDING DEFECT DETECTION

A. Model Design
For each sample, the monitoring data of the welding process

have time-series characteristics. Although the CNN can extract
the spatial characteristics of the laser welding quality data,
only relying on the local spatial features of CNN will ignore
the time-series characteristics contained in the data. The LSTM
is suitable for processing time-series data. Relative to RNN,
the LSTM considers the dependence and correlation between
long-distance time-series information. However, because it
only considers one-way data processing, the extracted feature
information is insufficient. The BiLSTM is composed of for-
ward LSTM and backward LSTM, which essentially solves the
problem of LSTM. The forward LSTM is used to capture the
above information, while the backward LSTM is used to cap-
ture the context information. Finally, the context data features
are fused to provide a more comprehensive understanding of
the overall time-series characteristics of the data. For complex
features and large amounts of data, the application of AM
can highlight important feature information that contributes
a lot to the final classification result after feature fusion and
improve the upper limit of model performance. Combining
various theories and practices, we propose to cascade CNN
and BiLSTM and introduce AM. The CNN-BiLSTM-AM
integrated model will take into account the advantages of
both CNN and BiLSTM, which can extract the space-time
characteristics of the laser welding quality data and solve
the problem of long-term dependence on missing information.
Moreover, the added AM can filter out the insignificant noise
information in the fused feature information, reduce or even
eliminate its impact on the final laser welding quality status

Fig. 5. Diagram of MSCNN-BiLSTM-AM training process.

recognition, and highlight the role of useful information in the
fused feature information. Here, the AM used in the fusion
model is self-attention.

In the fields of classification and recognition, the richer the
diversity of features mastered by general models, the better
the model performances. Single-scale convolution nuclei can
only extract local regional features within the convolution
nucleus’s receptor field, so some potential information under
larger or smaller receptor fields may be lost. After theoretical
demonstration and experimentation, we finally propose to use
multiscale convolution kernel to extract characteristic infor-
mation under different field conditions. Extracting features
using MSCNN needs moderation, because using different
convolution cores will increase the order of the overall network
parameters and the overall training cost of the network. Fig. 5
shows the MSCNN-BiLSTM-AM integrated model training
flow diagram. In terms of data preprocessing, standardized
processing strategies are still used to eliminate the impact of
data dimension and magnitude differences. For the design of
CNN, BiLSTM, and AM core functional layers, we use some
experimental experience and design strategies, by taking into
account the overall lightweight model and giving full play to
the performance advantages of each submodule.

For the integration model of MSCNN-BiLSTM-AM fusion,
we have made sufficient experimental comparisons and design
considerations. In order to extract different types of features,
we propose a multiresolution 1-D convolution structure for
CNN design. We implement two convolution layer branches
with different convolution core sizes, which are designed to
select time step ranges with different kernel sizes to extract
different spatial features from the original data. Each branch
contains two convolution layers, in which each contains a
batch normalization layer and an ReLU activation function.
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TABLE I
NETWORK STRUCTURE OF MSCNN–BiLSTM–AM MODEL

In designing LSTM, we use a BiLSTM layer on each branch
to extract time-series features. BiLSTM adds sequence reverse
information to LSTM, which extracts more time-series fea-
tures than one-way LSTM and generally outperforms one-way
LSTM. Next, we fuse and stitch the features extracted from the
two branches and then input the feature information of the two
branches into two linear models. Finally, the ReLU activation
function can be used to get the classified output. Table I shows
the network structure of the MSCNN-BiLSTM-AM model.

B. Experimental Discussion
In this study, the performance of weld defects identification

is assessed by using the following three classical evaluation
indexes of classification problem, i.e., recall, precision, and
F1-score (F1):

Precision =

(
1 −

N−

+

N+ − N+

− + N−

+

)
(9)

Recall =

(
1 −

N+

−

N+

)
(10)

F1 = 2 ·
Pre · Rec

Pre + Rec
(11)

where N+ is the total number of weld defect, N+

− is the
number of weld defect incorrectly predicted as nonweld defect,
N− is the total number of nonweld defect, and N−

+ is the
number of nonweld defect incorrectly predicted as weld defect.

This part uses the neural network model to learn the
time-space characteristics of plasma strength, light intensity,
and temperature change data in laser welding process and com-
bines AM to improve the upper limit of the integrated model
to identify and classify the quality of laser welding as a whole.
The performance changes of the models with and without
AM have been compared in this study. Under the condition

Fig. 6. Comparisons of (a) and (c) loss function and
(b) and (d) recognition accuracy changes on training and test sets
between (a) and (b) MSCNN–BiLSTM and (c) and (d) MSCNN–
BiLSTM–AM models without data enhancement conditions.

without and with data enhancement, the MSCNN-BiLSTM-
AM model demonstrates high-quality detection performance
of laser welding, in which no data enhancement condition
refers to that the model only uses 6467 original laser welding
quality datasets (5174 training data and 1293 test data),
while using data enhancement condition refers to training
the designed model by expanding the training set of original
data with 1147 enhanced quality data generated in previous
research papers [26].

In the absence of data enhancement, Fig. 6(a) and (b)
shows the change curves of MSCNN-BiLSTM loss function
and recognition accuracy on training and test sets, respec-
tively, while Fig. 6(c) and (d) shows the change curves of
MSCNN-BiLSTM-AM loss function and recognition accuracy
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TABLE II
PERFORMANCE METRICS OF MSCNN–BiLSTM INTEGRATED MODEL IN EACH CATEGORY WITH DATA ENHANCEMENT

TABLE III
PERFORMANCE METRICS OF MSCNN–BiLSTM–AM INTEGRATED MODEL IN EACH CATEGORY WITH DATA ENHANCEMENT

Fig. 7. Comparison of (a) and (c) loss function and
(b) and (d) recognition accuracy changes on training and test sets
between (a) and (b) MSCNN–BiLSTM and (c) and (d) MSCNN–
BiLSTM–AM models with data enhancement conditions.

on training and test sets, respectively. It can be seen that the
network can converge after 200 epochs. After the 150th epoch,
the performance of the model is stable on both the training set
and the test set, but whether there is or not AM, the model still
shows a large fluctuation on the test set during the pretraining
period. Under these conditions, the MSCNN-BiLSTM model
achieves maximum classification accuracy of 98.37% on the
test set, while the MSCNN-BiLSTM-AM model achieves
maximum classification accuracy of 98.49% on the test set.

With data enhancement, Fig. 7(a) and (b) shows the
change curves of MSCNN-BiLSTM loss function and
recognition accuracy on training set and test set, respec-
tively, and Fig. 7(c) and (d) shows the change curves of
MSCNN-BiLSTM-AM loss function and recognition accuracy
on training set and test set, respectively. It can be seen that
both MSCNN-BiLSTM and MSCNN-BiLSTM-AM models
converge more quickly with sufficient sample diversity, and
the overall loss function and model recognition accuracy
fluctuate less. Especially from Fig. 7(d), we can see that the

TABLE IV
CLASSIFICATION ACCURACY OF MSCNN–BiLSTM–AM AND

DIFFERENT MODELS UNDER DIFFERENT AMOUNTS

OF TRAINING DATA

performance of MSCNN-BiLSTM-AM model is more stable
and superior on the test set, and the classification recognition
accuracy can reach to 95% at the 50th epoch. On the one hand,
the real improvement of data diversity enhances the model’s
understanding of the potential rules of empirical data. On the
other hand, the AM plays a positive role in promoting the
model recognition ability when the data richness is sufficient.
Under this condition, the highest classification accuracy of the
MSCNN-BiLSTM model on the test set reaches to 98.68%,
while the highest classification accuracy of the MSCNN-
BiLSTM-AM model is 99.38%.

With data enhancement, Table II is the ability of the
MSCNN-BiLSTM fusion algorithm model to identify each
laser welding quality category. Table III is the classifica-
tion performance index of the MSCNN-BiLSTM-AM fusion
algorithm model in each laser welding quality category. The
abbreviations “Qua,” “Def3,” “Def-3,” “Defor,” “Cra,” “Rep,”
“LoW,” “Dri,” “Tilt,” and “W” in the table represent “qual-
ified,” “defocus 3 mm,” “defocus-3 mm,” “defocus-3 mm,”
“deformation,” “cracks,” “repetition,” “lack of weld,” and
“defocus of weld,” respectively. There are ten welding qual-
ity states, drift, tilt, and watermarks. The results show
that the designed detection model maintains high sensitivity
to the “qualified” quality state and greatly improves the
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Fig. 8. Confusion matrix of MSCNN–BiLSTM integrated model for welding defect identification. (a) Confusion matrix of the classification result.
(b) Confusion probability matrix of the classification result.

Fig. 9. Confusion matrix of MSCNN–BiLSTM–AM integrated model for welding defect identification. (a) Confusion matrix of the classification result.
(b) Confusion probability matrix of the classification result.

detection capability of the defect category “defocus 3 mm.”
Figs. 8 and 9 show the confusion matrix diagrams obtained
from MSCNN-BiLSTM and MSCNN-BiLSTM-AM cross-
validation on the enhanced dataset, respectively.

To verify the superiority of the overall performance of
MSCNN-BiLSTM-AM, the proposed fusion algorithm model
is compared with single-scale CNN, SVM [15], Naive
Bayes [27], random forest, and gradient boosting decision tree
(GBDT) [28] under different data volume conditions. It can be
seen that the performance of the proposed improved detection
model is better than those of the previous schemes.

Ablation experiments have been performed on the proposed
MSCNN-BiLSTM-AM model to compare the importance of
different functional submodules in MSCNN-BiLSTM-AM for
overall performance. The ablation experiment is similar to the
control variable method in that it deletes part of the network in

the fusion model and studies the performance changes of the
network after the deletion to understand the role and role of the
deleted part in the overall model. In Table IV, by comparing
the first five rows of data, MSCNN-BiLSTM-AM has the
best ability to identify welding defects. Adding BiLSTM and
AM can improve the overall recognition performance of the
model. Further comparisons show that the introduction of
MSCNN has a more significant effect on model promotion
than BiLSTM and AM. The experimental results verify the
feasibility of our designed method. In addition, even with
increasing sample diversity, some traditional machine learning
methods (such as SVM and Naive Bayes model in Table IV)
still fail to learn more potential regularity information from
the expanded samples, which confirms that some traditional
machine learning models are unable to handle complex indus-
trial application scenarios, while deep learning models are
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superior. The multimodel fusion strategy also makes the fusion
model more suitable for the analysis and processing of specific
scenarios and data by taking advantage of the best practices.

V. CONCLUSION

The main content of this article is to propose an MSCNN-,
BiLSTM-, and AM-based intelligent detection scheme for
laser welding defects (MSCNN–BiLSTM–AM). Because the
integration of multiple models can take into account the advan-
tages of different models, the fusion model proposed in this
article can not only extract the spatial feature extraction ability
of CNN but also extract the time-series association information
of features using BiLSTM. Meanwhile, the introduction of AM
in the appropriate location of the network reduces or filters the
impact of “noise” features on the final classification results and
improves the recognition performance of the overall detection
scheme. In addition, when designing the CNN, we tried the
multichannel and MSCNN and BiLSTM cascade, which fused
the feature information in different fields, greatly enriched the
diversity of features learned by the model, and made it possible
to train a better depth model. Finally, we verify the superiority
of the improved scheme proposed in this article through a large
number of comparison and ablation experiments and verify
that the advantages of introducing the subalgorithm model in
the theoretical design are reflected in the integrated model.
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